$3^{r d}$ ASSIGNMENT

DUE DATE: FRIDAY, JUNE $24^{\text {TH }}$

1. Differential Equations and Exponential Growth/Decay

Problem 1. The isotope thorium- 234 has a half-life of 24.5 days.
(a) What is the differential equation satisfied by $y(t)$, the amount of thorium-234 in a sample at time t ?
(b) At $t=0$, a sample contains 2 kg of thorium-234. How much remains after 40 days?

Problem 2. Verify that if the function $f(x)$ is a solution to the corresponding differential equation:
(a) $f(x)=4 e^{3 x} \sin x, y^{\prime}=3 y+4 e^{3 x} \cos x$
(b) $f(x)=e^{3 x}, y^{\prime \prime}+2 y^{\prime} \cdot 15 y=0$
(c) $f(x)=e^{x}, y^{\prime \prime}=x$
(d) $f(x)=\frac{2 x^{2}}{2 x-3}, \quad y^{\prime}=\frac{y^{2}(x-3)}{x^{3}}$

2. Integration by Substitution

Problem 3. Compute the following indefinite integrals, using the suggested substitution.
(a) $\int \sec ^{2} x \tan x d x, u=\tan x$
(d) $\int \sin ^{2} \theta \cos \theta d \theta, u=\sin \theta$
(b) $\int x e^{-x^{2}} d x, u=-x^{2}$
(e) $\int \sin (4 \theta-7) d \theta, u=4 \theta-7$
(c) $\frac{(\arctan x)^{2}}{x^{2}+1} d x, u=\arctan x$
(f) $\int x^{2} \sqrt{x+1} d x, u=x+1$

Problem 4. Compute the following indefinite integrals:
(a) $\int\left(x^{2}+1\right)\left(x^{3}+3 x\right)^{4} d x$
(f) $\int x^{3} \sqrt{x^{2}+1} d x$
(b) $\int \cot x \csc 2 x d x$
(g) $\int x^{2} \sqrt{2+x} d x$
(c) $\int \frac{\cos (\pi / x)}{x^{2}} d x$
(h) $\int \frac{(\ln u)^{4}}{u} d u$
(d) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$
(i) $\int \frac{d x}{(1+\sqrt{x})^{4}}$
(e) $\int x e^{1-x} d x$
(j) $\int x^{-1 / 5} \tan \left(x^{4 / 5}\right) d x$

Problem 5. Solve the following differential equations with given initial value:
(a) $y^{\prime}=\frac{\cos x}{\sin ^{2} x}, y\left(\frac{\pi}{2}\right)=3$
(d) $y^{\prime}=\frac{\cos x}{\sin ^{2} x} d x, y\left(-\frac{\pi}{4}\right)=0$
(b) $y^{\prime}=\frac{2 x}{\sqrt{1-x}}, y(0)=0$
(e) $y^{\prime}=e^{x} \sqrt{1-e^{x}}, y(-\ln 2)=0$
(c) $y^{\prime}=\frac{d x}{\cos ^{2} x \sqrt{1+\operatorname{tanx}}}, y\left(\frac{\pi}{4}\right)=7$
(f) $y^{\prime}=x(2 x+5)^{8}, y(1)=-2$

Problem 6. Can They Both Be Right? Hannah uses the substitution $u=\tan x$ and Akiva uses $u=\sec x$ to evaluate $\int \tan x \sec ^{2} x d x$. Show that they obtain different answers, and explain the apparent contradiction.

Problem 7. Evaluate $\int \sin x \cos x d x$ using substitution in two different ways: first using $u=\sin x$ and then using $u=\cos x$. Reconcile the two different answers.

Problem 8. Some Choices Are Better Than Others. Evaluate

$$
\int \sin x \cos ^{2} x d x
$$

twice. First use $u=\sin x$ to show that

$$
\int \sin x \cos ^{2} x d x=\int u \sqrt{1-u^{2}} d u
$$

and evaluate the integral on the right by a further substitution. Then show that $u=\cos x$ is a better choice.

3. Fundamental Theorem of Calculus, part II

Problem 10. Find the smallest positive critical point of

$$
F(x)=\int_{0}^{x} \cos \left(t^{3 / 2}\right) d t
$$

and determine whether it is a local min or max.
Problem 11. Evaluate

$$
\frac{d}{d x} \int_{\ln x}^{e^{x}} \sin t d t
$$

4. Area Between Curves

Problem 12.

(a) Find the area of the region between $y=3 x^{2}+12$ and $y=$ $4 x+4$ over $[-3,3]$:

(b) Find the area of the region enclosed by the graphs of $f(x)=$ $x^{2}+2$ and $g(x)=2 x+5:$

Problem 13. Sketch the region bounded by

$$
y=\frac{1}{\sqrt{1-x^{2}}} \quad \text { and } \quad y=-\frac{1}{\sqrt{1-x^{2}}}
$$

for $-\frac{1}{2} \leq x \leq \frac{1}{2}$ and find its area.
Problem 14. Sketch the region bounded by the curves and compute its area:
(a) $y=x+1, y=9-x^{2}, x=-1$ and $x=2$
(b) $y=\frac{1}{x^{2}}, y=x$ and $x=\frac{1}{8} x$
(c) $y=3 x^{2}, y=8 x^{2}, 4 x+y=4$ and $x \geq 0$

5. The Method of Partial Fractions

Problem 15. Write out the form of the partial fraction decomposition of the function:
(a) $\frac{2 x}{(x+3)(3 x+1)}$
(c) $\frac{4 x^{2}-7 x-12}{x(x+2)(x-3)}$
(b) $\frac{1}{x^{2}-1}$
(d) $\frac{x^{2}+2 x-1}{x^{3}-x}$

